LETTERS 2012 Vol. 14, No. 2 608–611

ORGANIC

Enantioselective Synthesis of Pyrrolidine-, Piperidine-, and Azepane-Type *N*-Heterocycles with α-Alkenyl Substitution: The CpRu-Catalyzed Dehydrative Intramolecular *N*-Allylation Approach

Tomoaki Seki, Shinji Tanaka, and Masato Kitamura*

Research Center for Materials Science and the Department of Chemistry, Nagoya University, Chikusa, Nagoya 464-8602, Japan

kitamura@os.rcms.nagoya-u.ac.jp

Received December 2, 2011

A cationic CpRu complex of chiral picolinic acid derivatives [(*R*)- or (*S*)-Cl-Naph-PyCOOCH₂CH=CH₂] catalyzes asymmetric intramolecular dehydrative *N*-allylation of *N*-substituted ω -amino- and -aminocarbonyl allylic alcohols with a substrate/catalyst ratio of up to 2000 to give α -alkenyl pyrrolidine-, piperidine-, and azepane-type *N*-heterocycles with an enantiomer ratio of up to >99:1. The wide range of applicable *N*-substitutions, including Boc, Cbz, Ac, Bz, acryloyl, crotonoyl, formyl, and Ts, significantly facilitates further manipulation toward natural product synthesis.

Saturated *N*-heterocycles, such as pyrrolidines, piperidines, azepanes, and their benzo-fused compounds, constitute a core part of pharmaceutically important natural alkaloids¹ and have therefore attracted much attention from synthetic chemists for the efficient stereoselective construction of these molecules,² particularly in a catalytic enantioselective manner. Among many approaches,³ installation of an alkenyl group at the α -position via intramolecular enantioselective N-C $_{\alpha}$ bond formation^{3f,4} is

^{(1) (}a) Roberts, M. F.; Wink, M. In *Alkaloids: Biochemistry, Ecology* and *Medicinal Applications*; Plenum: New York, 1998. (b) Buckingham, J.; Baggaley, K. H.; Roberts, A. D.; Szabó, L. F. In *Dictionary of Alkaloids*, 2nd ed.; CRC press: Boca Raton, FL, 2009.

⁽²⁾ Pyrrolidines and piperidines: (a) Borsini, E.; Broggini, G.; Colombo, F.; Khansaa, M.; Fasana, A.; Galli, S.; Passarella, D.; Riva, E.; Riva, S. *Tetrahedron: Asymmetry* 2011, 22, 264–269. (b) Vicario, J. L.; Badia, D.; Carrillo, L.; Ruiz, N.; Reyes, E. In *Targets in Heterocyclic Systems: Chemistry & Properties*, Spinelli, D., Attanasi, O. A., Eds.; Societá Chimica Italiana: Rome, 2008; Vol. 12, pp 302–327. (c) Escolano, C.; Amat, M.; Bosch, J. *Chem.—Eur. J.* 2006, *12*, 8198–8207. (d) Buffat, M. G. P. *Tetrahedron* 2004, 60, 1701–1729. (e) Felpin, F.-X.; Lebreton, J. *Eur. J. Org. Chem.* 2003, 3693–3712. Indolines: (f) Anas, S.; Kagan, H. B. *Tetrahedron: Asymmetry* 2009, *20*, 2193–2199. Tetrahydroisoquinolines:(g) Siegnalewicz, P.; Rinner, U.; Mulzer, J. *Chem. Soc. Rev.* 2008, *37*, 2676–2690. (h) Chrzanowska, M.; Rozwadowska, M. D. *Chem. Rev.* 2004, *104*, 3341–3370. Azepines and azepanes: (i) Quick, M. P.; Fröhlich, R.; Wünsch, B. *Tetrahedron: Asymmetry* 2010, *21*, 524–526. (j) Pyne, S. G.; Ung, A. T.; Jatisatienr, A.; Mungkornasawakul, P. *Mj. Int. J. Sci. Tech.* 2007, *1*, 157–165. (k) Meigh, J.-P. K. *Sci. Synth.* 2004, *17*, 825–927. (l) Kouznetsov, V.; Palma, A.; Ewert, C. *Curr. Org. Chem.* 2001, *5*, 519–551. (m) Kametani, T.; Fukumoto, K. *Heterocycles* 1975, *3*, 931–1004.

⁽³⁾ Pictet-Spengler-type reaction: (a) Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 6700-6704. Reviews for dehydrogenative C-C bond formation:(b) Scheuermann, C. J. Chem.-Asian J. 2010, 5, 436–451. (c) Li, C.-J. Acc. Chem. Res. 2009, 42, 335–344. Metalo-ene reaction: (d) Hara, O.; Fujino, H.; Makino, K.; Hamada, Y. Heterocycles 2008, 76, 197-202. Intramolecular C-allylation: (e) Bihelovic, F.; Matovic, R.; Vulovic, B.; Saicic, R. N. Org. Lett. 2007, 9, 5063-5066. Review for hydroamination of alkenes, allenes, and alkynes: (f) Chemler, S. R. Org. Biomol. Chem. 2009, 7, 3009-3019. See also: (g) Manna, K.; Xu, S.; Sadow, A. D. Angew. Chem., Int. Ed. 2011, 50, 1865-1868. Oxidative aminocarbonylation: (h) Tsujihara, T.; Shinohara, T.; Takenaka, K.; Takizawa, S.; Onitsuka, K.; Hatanaka, M.; Sasai, H. J. Org. Chem. 2009, 74, 9274-9279. Reviews for hydrogenation of enamines, imines, and N-heterocycles: (i) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. **2011**, *111*, 1713–1760. (j) Zhou, Y.-G. Acc. Chem. Res. **2007**, *40*, 1357–1366. (k) Glorius, F. Org. Biomol. Chem. **2005**, *3*, 4171–4175. Review for 1,4-addition of amines: (1) Enders, D.; Wang, C.; Liebich, J. X. Chem.-Eur. J. 2009, 15, 11058-11076.

one of the most attractive strategies because of the high utility of the olefinic moiety in subsequent functional transformations.

Scheme 1 shows one such protocol,⁵ in which prochiral ω -amino allylic alcohols masked by an easily removable *N*-protecting group (PG) or modified by a post-transformable moiety dehydratively cyclize. Both Nishizawa/Yamamoto⁶ and our⁷ groups have recently reported such an atomeconomic and operationally simple process in the enantioselective cyclization of ω -sulfonylamino allylic alcohols, although it was limited to specific cases. In this communication, we report a synthetically even more flexible method⁸ with high reactivity, selectivity, and generality, which utilizes our previously described Cl-Naph-Py-COOAll (1, All: allyl)/[CpRu(CH₃CN)₃]PF₆ (2) combined catalyst.⁹

N-Boc-protected (*E*)-6-aminohex-2-en-1-ol ((*E*)-**3a**) was selected as a standard substrate because the previously reported methods^{6,7} can be applied only to *N*-protected aromatic amine nucleophiles or C(3)-aryl-substituted allylic alcohols. Screening of the reaction conditions was started from [3a] = 500 mM; [(R)-1] = [2] = 0.5 mM;DMA; 100 °C; 3 h. The results are shown in Table 1.¹⁰

(5) For recent highlights of catalytic asymmetric allylation using allylic alcohols, see: Bandini, M. Angew. Chem., Int. Ed. 2011, 50, 994–995.

(6) Yamamoto, H.; Ho, E.; Namba, K.; Imagawa, H.; Nishizawa, M. Chem.—Eur. J. 2010, 16, 11271–11274.

(7) Miyata, K.; Kutsuna, H.; Kawakami, S.; Kitamura, M. Angew. Chem., Int. Ed. 2011, 50, 4649–4653.

(9) Tanaka, S.; Seki, T.; Kitamura, M. *Angew. Chem., Int. Ed.* **2009**, *48*, 8948–8951. Cl-Naph-PyCOOAll: allyl 6-(2-chloronaphthalen-1-yl)-5-methylpyridine-2-carboxylate. For the catalytic cycle of the achiral version, see: Saburi, H.; Tanaka, S.; Kitamura, M. *Angew. Chem., Int. Ed.* **2005**, *44*, 1730–1732.

(10) For details, see the Supporting Information.

Table 1. Dehydrative Intramolecular Asymmetric *N*-Allylation of (*E*)-**3** Using (*R*)-Cl-Naph-PyCOOAll ((*R*)-**1**)/[CpRu-(CH₃CN)₃]PF₆ (**2**) Combined Catalyst^{*a*}

P = a: *t*-C₄H₉OCO (Boc), b: C₆H₅CH₂OCO (Cbz), c: CH₃CO (Ac), d: CF₃CO, e: C₆H₅CO (Bz), f: CH₂=CHCO, g: (*E*)-CH₃CH=CHCO, h: HCO, i: 4-CH₃C₆H₄SO₂ (Ts)

entry	$P\left(substrate ight)$	S/C	time, h	$\% \mathrm{conv}^b$	$S:\!R^c$
1	t-C ₄ H ₉ OCO (3a)	1000	3	>99 (94)	98:2
2^d	t-C ₄ H ₉ OCO (3a)	1000	3	>99(-)	2:98
3^e	t-C ₄ H ₉ OCO (3a)	2000	6	>99(-)	98:2
4^{f}	t-C ₄ H ₉ OCO (3a)	100	< 0.5	>99(-)	98:2
5	$C_{6}H_{5}CH_{2}OCO\left(\boldsymbol{3b}\right)$	1000	3	>99 (99)	98:2
$6^{f,g,h}$	$CH_3CO(\mathbf{3c})$	100	3	$>99^{i}(90)$	(93:7)
7^{f}	$CF_{3}CO(\mathbf{3d})$	100	3	j	
8^{f}	$C_{6}H_{5}CO\left(\boldsymbol{3e}\right)$	100	3	> 99 (95)	(97:3)
$9^{f,g}$	CH ₂ =CHCO (3f)	100	24	>99 (98)	95:5
$10^{f,g,h}$	(E)-CH ₃ CH=CHCO (3g)	100	24	>99 (91)	(93:7)
$11^{f,g}$	HCO (3h)	100	24	>99(97)	(96:4)
12	$4\text{-}CH_{3}C_{6}H_{4}SO_{2}\left(3i\right)$	1000	3	> 99 (95)	(97:3)

^{*a*} Unless otherwise specified, all of reactions were carried out under the following conditions: [**3**] = 500 mM; [(*R*)-**1**/**2**] = 0.5 mM; solvent, DMA; bath temp, 100 °C. ^{*b*} ¹H NMR analysis. The value in parentheses: isolated yield of **4**. ^{*c*} GC or HPLC analysis. Absolute configuration: comparison of optical rotation with the reported values. Not determined for the parenthesized data. ^{*d*} Catalyst: (*S*)-**1**/**2**. ^{*e*} [**3**] = 1 M. ^{*f*} [**3**] = 100 mM, [(*R*)-**1**] = [**2**] = 1 mM. ^{*s*} 10:1 *t*-C₄H₉OH–DMA mixed solvent. ^{*h*} 70 °C. ^{*i*} **4c:5c** = 95:5. Use of DMA as solvent quantitatively gave **5c**. ^{*j*} Only diene **6d** (*E*/*Z* = 2:1) was obtained in either DMA or *t*-C₄H₉OH.

The standard quantitatively afforded (S)-4a with an enantiomer ratio (er) of 98:2 (Table 1, entry 1), and the enantiomeric product (R)-4a was obtained by using an S-catalyst system (Table 1, entry 2). The substrate concentration could be increased to 1 M [substrate/catalyst (S/C) = 2000 (0.05 mol %)] (Table 1, entry 3). Even with S/C = 10000 (0.01 mol %), the reaction proceeded without loss of er, although it was sluggish (25%, 24 h). In terms of easy lab operation and quickness, S/C = 100 (1 mol %)is recommended (Table 1, entry 4). DMA, THF, and $t-C_4H_9OH$ are the solvents of choice. The reaction was slower in CH₃OH (54% conv), C₂H₅OH (71%), *i*-C₃H₇OH (91%), ether (90%), TBME (84%), dioxane (90%), and CH₂Cl₂ (89%), but an er of 96:4 to 97:3 was maintained, whereas toluene deteriorated both the reactivity and selectivity (31% conv, 84:16 er). No reaction occurred in CH₃CN or acetone. The temperature could be lowered to 70 °C (24 h, 88% yield, 98:2 er), but the reaction proceeded little at 50 $^{\circ}$ C.¹⁰

⁽⁴⁾ Tsuji–Trost-type N-allylation by allyl esters and halides: (a) Helmchen, G. In *Iridium Complexes in Organic Synthesis*; Oro, L. A., Claver, C., Eds.; Wiley-VCH: Weinheim, Germany, 2009; pp 211–250. (b) Trost, B. M.; Zhang, T.; Sieber, J. D. *Chem. Sci* **2010**, *1*, 427–440. See also: (c) Teichert, J. F.; Fañanás-Mastral, M.; Feringa, B. L. *Angew. Chem., Int. Ed.* **2011**, *50*, 688–691. (d) He, H.; Liu, W.-B.; Dai, L.-X.; You, S.-L. *Angew. Chem., Int. Ed.* **2010**, *49*, 1496–1499. (e) Hara, O.; Koshizawa, T.; Makino, K.; Kunimune, I.; Namiki, A.; Hamada, Y. *Tetrahedron* **2007**, *63*, 6170–6181.

⁽⁸⁾ Pioneering works for nonenantioselective dehydrative N-allylation of carbamates and carboxylic amides. Pd: (a) Hirai, Y.; Nagatsu, M. Chem. Lett. 1994, 21–22. (b) Makabe, H.; Kong, L. K.; Hirota, M. Org. Lett. 2003, 5, 27–29. (c) Eustache, J.; de Weghe, P. V.; Le Nouen, D.; Uyehara, H.; Kabuto, C.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4043–4053. (d) Yokoyama, H.; Ejiri, H.; Miyazawa, M.; Yamaguchi, S.; Hirai, Y. Tetrahedron: Asymmetry 2007, 18, 852–856. (e) Ku, J.-M.; Jeong B.-S.; Jew, S.-S.; Park, H.-G. J. Org. Chem. 2007, 72, 8115–8118. (f) Hande, S. M.; Kawai, N.; Uenishi, J. J. Org. Chem. 2007, 74, 244–253. Bi:(g) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2007, 46, 409–413. Au:(h) Mukherjee, P.; Widenhoefer, R. A. Org. Lett. 2011, 13, 1334–1337.

Not only the BocNH substrate (E)-3a but also the CbzNH and TsNH substrates 3b and 3i could be used with S/C = 1000 (0.1 mol %) to give **4b** and **4i** with a high er (Table 1, entries 5 and 12). Replacement of the alkoxycarbonyl or sulfonyl substitution on N with an acyl group required S/C = 100 (1 mol %) to gain reasonable reactivity and caused undesired reactions, giving ketone 5 or diene 6 in some cases. Thus, 3c (P = Ac) was quantitatively converted to 5c in DMA, but change of the DMA solvent to 10:1 t-C₄H₉OH–DMA afforded the desired product 4cin 95% yield (Table 1, entry 6). The benzamide 3e(P = Bz)smoothly cyclized in DMA to 4e with a higher yield and without formation of 5e (Table 1, entry 8). For some reason, 4c was susceptible to a 1,3-hydrogen shift in DMA to the enamide compound, which was then hydrolyzed to 5c by water liberated during the course of dehydrative allylation.¹¹ The reactions with **3f** ($P = CH_2 =$ CHCO) and **3h** (P = HCO) were completed under standard conditions to give a 95:5 mixture of 4f and 6f (E/Z =3:1) and an 80:20 mixture of **4h** and **6h** (E/Z = 4:1), respectively. Formation of the diene was avoided by using a 10:1 t-C₄H₉OH–DMA mixed solvent (Table 1, entries 9 and 11). No cyclization occurred with the CF₃CONH substrate **3d**, while only β -elimination quantitatively proceeded to give 6d (E/Z = 2:1) in either DMA or t-C₄H₉OH (Table 1, entry 7). Free amine (P = H) and its HX salts $(X = TsO, AcO, PF_6)$ showed no reactivity.

Table 2 shows the scope and limitation of the present asymmetric catalysis for the synthesis of chiral pyrrolidines and piperidines.¹⁰ Not only E allylic alcohols but also the Z-isomer is the substrate of choice. With the geometrical Z-isomer of (E)-3a, the (R)-1/2 catalyst gave 4a with preference for the R enantiomer (Table 2, entry 1). The compound 7a (n = 2), in which one CH₂ is extended from (E)-3a (n = 1), was completely converted to the corresponding 6-exo-trig cyclized product 8a with an er of 97:3 (Table 2, entry 2). The tertiary alkyl-substituted BocNH substrate 7b could also be used (Table 2, entry 3). Introduction of a methyl group at C(2) of **3a** was tolerable (Table 2, entry 5), but the reaction of the C(3)-methyl substituted substrate 9b led to generation of the diene (Table 2, entries 5 and 6). With N-protected aromatic amines 11, both 5- and 6-exo-trig cyclization proceeded to give the indoline and tetrahydroquinoline derivatives 12 with an er of > 99:1 and 95:5, respectively (Table 2, entries 7 and 8). Both the reactivity and enantioselectivity were dramatically decreased with the C(4)-C(5) arene-fused substrate 13a (Table 2, entry 9),⁷ whereas one CH_2 insertion at C(4) led to successful cyclization of 13b to 14b (Table 2, entry 10). The N-Ts-protected ω -aminocarbonyl allylic alcohol 15a formed a $N-C_{\alpha}$ bond with nearly perfect enantioselectivity to give γ -lactam 16a (Table 2, entry 11). With this N-nucleophile, the 3,3-disubstituted allylic alcohol 15b could also be utilized to give 16b with high stereocontrol of the tetrasubstituted carbon

Table 2. Asymmetric Synthesis of Pyrrolidines and Piperidines Using (R)-1/2-Combined Catalyst^{*a*}

entry	substrate	product	% yield ^b	er ^c
0	R NHP B 3 a 1			
	Hn 2 OH	Ly.	1	
1^d	(Z)-3a ($\mathbf{P} = \text{Boc}; R = H; n = 1$)	(R)-4:	a 92	6:94
2	7 a : $P = Boc; R = H; n = 2$	(S)-8:	a 90	97:3
3ef	b : $P = Boc; R = CH_3; n = 1$	81	92	97:3
4g	c: $\mathbf{P} = (E)$ -CH ₃ CH=CHCO; R = H; $n = 2$	8	c 96	94:6
	NHBoc		loc	
		(1.	4	
	→ → OH R ¹	R	R ¹	
5 ^e	9 a: $R^1 = CH_3$; $R^2 = H$	(S)-10:	a 96	98:2
6g	b : $R^1 = H$; $R^2 = CH_3$	10) _h	-
	NHP			
	Hn OH	- An		
7 <i>f.i.j</i>	11 a : P = Boc; $n = 1$	(S)-12:	a 98	>99:1
8 <i>j</i> , <i>k</i>	b : P = Boc; $n = 2$	121	99	95:5
	NHP	~ ~		
	HANNOH (N	_	
9	13 a: $P = Ts; n = 0$	14:	a 30	53:47
10/	b : P = Boc; $n = 1$	14	90	96:4
		2-NT	s	
	ОН	R		
11	15 a : $R = H$	16:	a 92	99:1
12/	b: $R = CH_3$	(S)-16	92	93:7

^{*a*} Conditions: 25–120 mg scale; [substrate] = 100 mM; [(*R*)-1] = [2] = 1 mM; DMA; 100 °C; 3 h unless otherwise specified. *E* allylic alcohols were used except for (*Z*)-**3a** (entry 1). ^{*b*} Isolated yield. ^{*c*} GC or HPLC analysis. ^{*d*} 1 h. ^{*e*} [substrate] = 500 mM; [(*R*)-1] = [2] = 0.5 mM. ^{*f*} 6 h. ^{*g*} 24 h. ^{*h*} 50% conv, 85:15 mixture of *N*-Boc-protected 6-amino-3-methylhexa-1,3diene (*E*/*Z* = 3:2) and 6-amino-3-methylenehex-1-ene. ^{*i*} 5 g scale. ^{*j*} 10:1 *t*-C₄H₉OH–DMA mixed solvent. ^{*k*} 1 g scale.

stereogenic center (Table 2, entry 12), which would be a good precursor for α -methyl glutamic acid.¹² Success in the highly enantioselective cyclization of the *N*-alkenoyl allylic alcohols **3f**, **3g**, and **7c** (P = CH₂=CHCO or (*E*)-CH₃CH=CHCO) to **4f**, **4g**, and **8c**, respectively (Table 1, entries 9 and 10; Table 2, entry 4), should shorten the steps to pyrrolizidine and indolizidine alkaloids when combined with subsequent Grubbs intramolecular metathesis.¹³

The Cl-Naph-PyCOOAll/CpRu method could also be applied to the construction of an azepane skeleton, although

⁽¹¹⁾ For Ru-catalyzed isomerization of the (CO)N-allyl bond to the enamide, see: Krompiec, S.; Krompiec, M.; Penczek, R.; Ignasiak, H. *Coord. Chem. Rev.* **2008**, *252*, 1819–1841.

⁽¹²⁾ For an example of the catalytic asymmetric synthesis, see: Sawamura, M.; Nakayama, Y.; Tang, W.-M.; Ito, Y. J. Org. Chem. **1996**, *61*, 9090–9096.

^{(13) (}a) Lim, S. H.; Ma, S.; Beak, P. J. Org. Chem. 2001, 66, 9056–9062. (b) Arisawa, M.; Takezawa, E.; Nishida, A.; Mori, M.; Nakagawa, M. Synlett 1997, 1179–1180.

not as generally as in the case of five- and six-membered ring formation (Figure 1). The simplest substrate 17a (E/Z = 97:3) and its imide derivative 17c underwent only β -elimination to give the diene products 18a and 18c (E/Z = 2:1). With the arene-fused substrates 17b and 17d, however, the desired cyclization efficiently proceeded to generate the azepane-type N-heterocycles 18b and 18d with an er of 99:1 and 96:4, respectively. The compounds 18b and 18d were high-potential intermediates for the synthesis of tetrahydrobenzazepine alkaloids.^{2i,k-m,4d,4e} Introduction of two sp^2 carbons in the carbon tether may enable better HOMO/LUMO orbital interaction between the N atom and the π -allyl C(3) atom. Replacement of Ts group of 17b with Boc, however, decreased the reactivity and caused β -elimination (29% conv; E/Z = 2:1).¹⁰ The acidity of NH also exerts a significant effect on the reactivity.

Figure 1. Synthesis of azepane-type *N*-heterocycles ([**17**] = 100 mM; [(R)-1/2] = 1 mM; 10:1 t-C₄H₉OH-DMA; 100 °C; 3 h). (a) **18c**-type diene (E/Z = 2:1) was formed in 10% yield.

The present catalysis involves many reaction pathways, such as (i) π -allyl Ru(IV) formation (k_1); (ii) reductive nucleophilic attack of a PNH to the π -allyl ligand to regenerate Cl-Naph-PyCOOH/CpRu(II) (k_2);⁹ (iii) β -elimination from the π -allyl complex (k_3); and (iv) 1,3-hydrogen shift of the α -alkenyl *N*-heterocyclic product to the

 α -exocyclic enamide derivative (k_4), followed by hydrolysis. The rate k_1 would be enhanced by a "redox-mediated donor-acceptor bifunctional catalyst" mechanism,^{7,9,14} in which the hard H⁺/soft Ru combined catalyst cooperatively activates the allylic alcohol via protonation on the hard hydroxy oxygen and via coordination of the soft double bond to Ru(II). Such a synergetic effect would facilitate the dehydrative π -allyl formation (k_1). The fate of the π -allyl species is determined by the relative rate of k_2 to k_3 and k_4 , which is strongly affected by the electronic, steric, stereoelectronic, and molecular orbital properties of PNH. More systematic investigation of the substrate structure/reactivity/selectivity relationship is required for full elucidation of the mechanism. This is an ongoing project in our group.

In summary, by using 0.05-1.00 mol % 1/2, highly enantioselective intramolecular N-allylation of N-protected ω -amino and -aminocarbonyl allylic alcohols has been realized without activation of allylic alcohols as the esters or halides. Boc-, Cbz-, Ac-, Bz-, CH2=CHCO-, (E)-CH₃CH=CHCO-, HCO-, and Ts-NH can act as nucleophiles, depending on the reaction conditions. Not only 5- and 6-exo-trig cyclization but also seven-membered ring formation can be attained. The easily removable PGs, as well as the structurally transformable N-substituents, should facilitate the syntheses of pharmaceutically important natural *N*-heterocycles. To the best of our knowledge. the present Cl-Naph-PyCOOAll/CpRu(II) method is the first example showing very high applicability to C(3)-alkylsubstituted allylic alcohols. Furthermore, complementary use of the present method with our other asymmetric catalyst, Naph-diPIM-dioxo-R/CpRu(II)/p-TsOH,⁷ which has high performance for C(3)-aryl substrates, should significantly widen the scope of substrate patterns in the asymmetric intramolecular dehydrative N-allylation approach.

Acknowledgment. This research work was financially supported by a Grant-in-Aid for Scientific Research (No. 25E07B212) from the Ministry of Education, Science, Sports and Culture, Japan.

Supporting Information Available. Experimental details for dehydrative asymmetric cyclization, crystal data for **16b**, and copies of ¹H NMR and ¹³C NMR spectra for substrates and all products. This material is available free of charge via the Internet at http://pubs.acs.org.

^{(14) (}a) Kitamura, M.; Nakatsuka, H. *Chem. Commun.* **2011**, *47*, 842–846. For the original reaction of the donor–acceptor bifunctional catalyst concept, see: (b) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. *J. Am. Chem. Soc.* **1986**, *108*, 6071–6072. (c) Noyori, R.; Kitamura, M. *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 49–69.